返回第6章 开始讨论的极限论,稍微涉及一些叉积,逆序数的证明(2 / 2)微积分学习之路首页

这里从最基本的实数开始,a*b,就是坐标中的普朗克常数存在的乘B中普朗克常数构成的矩阵,如果a和b都是向量空间,是不是发现这个式子和求积分相似,aXb就是ab的空间积分,是一个三维的图像,那么用张量计算公式,并且给它带人包含有第三个维度的三维坐标,算出来的就是垂直的那个维度,这也是叉乘为什么会升纬的原因,会得到新的纬度,

接下来解释为什么会是垂直

坐标a乘坐标b构成的矩阵都是垂直的,,因为没有乘出来的矩阵还是斜着的,里面可以是0来占位置,但也不能为空,要不然也不叫矩阵了。

向量a和向量b不是垂直,是有角度的,用到垂直a的α,a和平行a的β,每一个都要用两个值一个表示有理数一个表示无理数,进行排列,要求保留的值是aXb张成范围里面的值,这样就会剩下的是垂直的乘积,这是从实数定义开始的证明,

aXb是一个立体的图像,是有高度的,且高度为一,那么引入含有第三位度,的单位坐标,它里面包含的量是没有变化的,用行列式取出空间值包含的量,是也是第三维度的值,因为已知的两个纬度被取成了单位值,所以第三个向量的坐标就是aXb的张量,

为什么这个高度是垂直的,和aXb张成范围里面的值等于垂直分量的乘积的证明一样,

?设置为任意域V是?的一个向量空间,V'也是,并且V,V'是对偶的或者叫共轭空间V× V'

就说一下双线性型空间,为啥叫双线性空间,这只是p和q的取值失一的原因,

原本应该叫做V^p X V'^q是叫做多重线性映射的,但是p和q的取值是1,只剩下两个了,双线性型空间,p和q有共变性和反变性,这个暂且不谈。就双线性型空间,其实就是两个向量放在一起,构成一个线性组。雷声大雨点小的样子,

aXb的向量构成和行列式有关,所以a和b的顺序颠倒一下就会多个负号,所以逆序数的作用就是取统计颠倒了几次,是奇数还是偶数,因为俩俩比较容易有漏网之鱼,所以采用的逆序数,颠倒次数,和逆序数的奇偶性是一样的。